YOUR IDEA, DESIGNED FOR ADDITIVE
Increase strength, optimize efficiency, reduce cost – these are some of the benefits of Additive Manufacturing that our engineering team can help you to achieve. Design for Additive Manufacturing (DfAM) is a set of guidelines and methodology that our engineering team applies in order to make the best use of the benefits of additive manufacturing.
Over 40% of all Precision ADM employees are engineers. We believe that providing our customers with the best DfAM-oriented team will make for the best manufactured output and value.
Whether you are creating an innovative new design, or require a run of production parts, our team can assist you with key optimizations. Metal 3D printing allows for new approaches to design–something our team of dedicated engineers are committed to. With this combination of world-class manufacturing capabilities and expertise, our customers are able to produce an end-use part with features and capabilities previously unavailable to them.
WE KNOW AM SO WELL, WE TEACH IT
Precision ADM DfAM Training
We offer Design for Additive Manufacturing (DfAM) training out of our headquarters in Winnipeg, Canada. This two day training course is conducted by our engineering team, and covers a variety of topics related to designing parts and devices specifically to be additively manufactured.
Considerations before 3D printing include support structures, options for part simplification through topology optimization, the potential problems caused by heat stresses as part of the laser sintering process, and many other considerations.
- Understand the possibilities and limitations of Additive Manufacturing
- Understand the design workflow
- Learn how to successfully design, optimize, build, and apply Additive Manufacturing
- Learn technical and design guidelines
- Learning the Design Thinking methodology
- Experience AM process chain with a hands-on approach
- Using AM design on practical exercises
DfAM Training Course Syllabus
Introduction
Additive Manufacturing Technology: The Advantages, How to Leverage AM, Functional Principles, Standards, What is DfAM? Precision ADM’s 10 Step Process
Process Fundamentals
Build Volume, Influencing Factors, Thermal Processes, Layer Effects, Build Orientation, Shrinkage and Distortion, Surface Finishes, Part Performance, Support Structures
Design Guidelines – Quality
Triangulation, Data Quality, Dimensional Accuracy, Detail Resolution, Walls, Surface, Mechanical Properties
Design Guidelines – Cost
Analysis of break-even points for low volume production, and screening parts for the best manufacturing application
Post Processing Guidelines
Heat Treatment, Wire EDM, Removal of Supports, Media Blasting, Micro-machining Processes, 5-Axis CNC Machining, Other machining processes
Case Studies
Real-world examples of how DfAM principles have been proven effective
Material Properties
Available powder types, material suitability for various applications
Lattice Structures
Tradeoffs, considerations for economic gains, mechanical constraints
EOS AM Process
Methods and benefits of print parameter editing